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Adsorption at High Pressures. I 

BY ALBERT SPRAGUE COOLIDGE 

Most experiments on adsorption phenomena 
are performed with the adsorbent in a container 
which it does not completely fill. Some account 
must be taken of the effects due to the unad-
sorbed fluid in the dead space. There seems to be 
available no general discussion of this point 
(including thermal effects) applicable over the 
whole range of existence of the adsorbed substance 
in the fluid state. I t is usually assumed that the 
"dead" fluid can be either neglected or treated as 
a perfect gas. A closely related question is the 
application of buoyancy corrections to spring-
balance experiments.1 

The method of applying these corrections is 
essentially a matter of definition, which may 
vary according to the purpose in hand. As fre
quently happens, a purely objective definition, 
suitable for strict thermodynamic discussion, 
may prove more precise, but less illuminating, 
than another into which are permitted to enter 
certain quantities of an interpretive character, 
which are not open to exact and unambiguous 
measurement, but may by various means be 
estimated. In the case of a highly disperse porous 
adsorbent, two such interpretive quantities are 
<Pi, the "true" or "skeleton" specific volume of the 
adsorbent, and <&, the specific pore volume or 
adsorption space. 

In making this statement about <pi, no dis
respect is intended toward the many workers who 
have attacked the problem of the true density of 
adsorbents. Their methods all involve special 
assumptions, and lead to results only approxi
mately in agreement. It is clear that no experi
ment on the displacement of any fluid by an 
adsorbent will give the true density unless some 
assumption is introduced concerning the amount 
of adsorption which occurs, and a definition rest
ing on such an assumption cannot logically be used 
to determine adsorption itself. In the author's 
opinion, highly porous adsorbents approach mo
lecular dispersity, and their "true" density is in 
principle as elusive as the "true" density of a 
solute in an ordinary solution. 

The pore volume, <&, is still more ambiguous. 
For a plane adsorbent the conception is meaning-

(1) See, for example, J. W. McBain and G. T. Britton, T H I S 
JOURNAL, S2, 2198 (1930). 

less. Porous adsorbents on the other hand show 
evidence of a fairly constant adsorption space. 
The amounts of various saturated vapors which 
they pick up are surprisingly well-defined (if we 
neglect the transition curvature which appears in 
the isotherms just below the saturation pressure), 
and it has been frequently noted2 that these 
amounts correspond quite closely to the quanti
ties of the corresponding liquids which would be 
required to fill a certain volume, at normal or 
somewhat elevated pressure. We may take this 
volume as a measure of <&, ignoring the possibility 
that a portion of the pore volume is not accessible 
to adsorbed molecules. An alternative is to place 
<Pi + <pi equal to the total or block volume, possi
bly measurable by displacement of mercury. Or, 
again, <pi and <a may be treated as arbitrary para
meters, adjustable in order to give the best agree
ment between experimental and predicted iso
therms. 

A possible definition, A, places the amount 
adsorbed just equal to the total amount contained 
in the pore volume (i. e., all matter under the 
influence of the adsorption forces). Data reduced 
on this basis lend themselves to a simple physical 
interpretation: they correspond to experiments 
performed with a container which the adsorbent 
completely fills (a container of volume ^1 + <&)• 
When the actual container is larger, the extra 
volume is considered as dead space, and a corre
sponding correction applied. This method is 
open to the objection that ^2 is not uniquely 
known. The classical definition, B, avoids this 
difficulty by defining the amount adsorbed as the 
excess material present in the pores over that 
which would be present under the normal density 
at the equilibrium pressure. This amounts to 
including <& as part of the dead space in comput
ing the correction, so that the result is less simple 
of interpretation; yet it is still subject to the 
ambiguity inherent in <pi. A completely objective 
definition, C, can be achieved only by including 
<Pi + <P2 in the dead space, and thus placing the 
amount adsorbed simply equal to the excess fluid 
present in the container over that which would be 

(2) G. C. Schmidt and B. Hinteler, Z. physik. Chem., 91, 103 
(1916), Table 9; M. Polanyi and F. Goldman, ibid., 132, 321 (1928), 
Table 17. 
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present under the same external conditions if the 
adsorbent were completely absent. The depar
ture from simplicity of interpretation is no more 
serious than with definition B. 

It will be seen that in each case the problem of 
corrections can be formally reduced to that of 
calculating, from observations upon a system at 
volume V, the properties which it would have 
under identical external conditions except that 
its volume were reduced to some special value V0, 
with the aid of the assumption that the "dead 
space" V — V-V0 contains nothing but pure 
fluid in its normal state. V is to be chosen 
equal to <pi + p2, to <pi, or to zero, accordingly as 
we adopt definition A, B or C. Definitions of 
thermal quantities, and corresponding corrections 
to calorimetric experiments, follow from the same 
principle. 

A summary of the required thermodynamical 
relations will be useful. We assume that a system 
containing the fixed quantities of adsorbent M 
and fluid N (in arbitrary units, but N is conven
iently measured in moles) will have a unique 
P-V-T relationship measurable in the ordinary 
way, so long as V is not allowed to become smaller 
than some value which is roughly the block 
volume of the adsorbent. We need not inquire 
what actually happens at smaller volumes, for we 
discuss this domain only in connection with the 
above-mentioned purely formal device for es
tablishing corrections. The total energy of the 
system, U, will not be open to experimental 
determination. But we may determine AU, the 
energy loss on forming the system from its com
ponents, by means of an experiment in which we 
measure the heat evolved minus the work received 
when the evacuated adsorbent comes to equi
librium with the fluid, in such a way that the 
pressure of the latter is not changed. We may 
write 

U = Jlfu. + Nui - AU (1) 

where wa and Mf are the original specific energies 
of adsorbent and fluid, at the given T and P. 
Since the adsorbent cannot exist in the pure state 
except at zero pressure, we may neglect its com
pressibility and consider ua a function of tem
perature only. Subject to the given restriction 
on the range of V, we shall find that for a given 
P and T, AU is proportional to M, and is inde
pendent of N or V; and this empirical fact will 
be incorporated as a fundamental assumption in 
what follows. 

Two new quantities may be defined as follows: 
AU = M(tta - Sa) = JV(Mf - U1) (2) 

U = JVMf + JIfS. = JIfMa + JVSf (3) 
wa and Mf are essentially the apparent specific or 
molal energies of adsorbent and fluid in the sys
tem, and are functions of P and T; U( also de
pends on N/M, but ua is independent of both M 
and N. Evidently Sa may be regarded as the 
partial specific energy of the adsorbent, (bU/ 
<5M)Ni P> T, while the partial molal energy of the 
fluid is simply u(. 

Analogous quantities may be defined in connec
tion with volume or any other extensive property. 
In the case of volume, we cannot observe i/a and 
therefore A V; but on the other hand V is directly 
measurable, and the equation 

V = JVlTf + JIfBa (4) 

serves to give an unambiguous definition of the 
partial specific volume of the adsorbent in the 
system as a function of P and T only. Heat 
effects cannot well be derived in the usual way 
from a heat function, because the pressure is not 
constant during the ordinary operations. We 
may define 

AQ= AU + NPv1 = Nih - ut) (5) 
(with hi = ut + P»f) 

as the heat evolved when N moles of fluid flow into 
an evacuated bulb containing the adsorbent, 
things being so arranged that the fluid enters the 
calorimeter slowly and at the pressure P, and that 
the final pressure in the bulb is also P. We shall 
also be interested in the heat evolved when 1 mole 
of fluid, at pressure P, is transferred to a very 
large system in which the equilibrium pressure is 
already P. This quantity we shall call 

, /Z>U\ & ._ ., M. 3P 
* = hl-(zNl = ZNAQ-NZP-5N = 

- .7but bP . . 
ht - ut - JV -^p ^ (6) 

We shall now introduce the assumption that the 
process just described is physically indistinguish
able from one in which the system is originally 
chosen so as to include the one mole of fluid and 
the volume it occupies, and is then compressed 
through 1 molar volume. (This simply means 
that when the system is brought into contact 
with a quantity of pure fluid at the same pressure, 
nothing of importance will occur.) We then 
obtain the Clapeyron equation 

2 = nf(P + Z>U/dT) = v:T(i)P/bT)v (7) 
We now imagine the system divided into two 

parts, of volumes V and<, V containing, respec-
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tively, N0 and JV' moles of fluid, with all the 
adsorbent in the first part, and proceed to calcu
late the properties (designated with °) of this 
part taken alone. We find 

JV° = N - N' = N - V'/vi (S) 
AIf= A U (9) 

»" = i'a (H)) 

«° = Sn (11) 

Tt] - w, - N'AU/NN" (12) 

AQ0 = AQ - P 7 ' = AC/ + N°Pv! (13) 

_ i r , N,zui*p _ 
dN'/dN L2 3P d# 

dA"" 

= »,r Uf/r 1 

*pw] 
where 

(14) 

(15) 
d_N' _ TJ dz>f dP 
biV" '„» dP 5.V 

Equat ion (14) is derived by considering the heat 
evolved upon the simultaneous admission, a t 
equilibrium pressure, of dJV° moles of fluid into 
the volume V0 and dJV' moles into the dead space 
V1 namely 

qdN = q6dN" + V1PdN' - N'(dU!/bP)dP (16) 

Upon replacing ° by a'b,c' and setting F" = 
•pi + <f>i, Vb = ^i, V0 = 0, we get at once the 
required correction formulas for the various 
quantities according to the three possible defini
tions. 

For the amount adsorbed we find 
N" = N - (V - <p, - Vi)Iv1 = -(Md3 - V i - Vi)/vt 

(17) 
JVb = JV - ( 7 - Vi)M = -(Mv, - vi)M (18) 
N' = N - VM = -MiJv1 (19) 

When the experiments are made with a spring 
balance, we have 

WtN* = W — Mwa + Wt(Vi + vdM (20) 
WlNb _ iY _ JIf̂ 11 _j_ wsvi/vi (21) 
TOfAT" = W - Mw0, (22) 

where IF is the apparent weight (corrected for 
buoyancy of container and spring), and ws and 
w.A are specific weights. 

The definition of thermal quantities is some
what more involved. By "heat of adsorption" 
we wish to express the quantity of heat accom
panying some isothermal process connected with 
adsorption, divided by the simultaneous change 
in quantity adsorbed. Thermal effects due to 
dead fluid must be corrected for. This correc
tion does not enter the total irreversible adsorp
tion heat, which is simply AU/N*, AU/Nh or 
AU/NC. Note that the quantity AU/M is 
available as a uniquely determined function of P 
and T, without reference to any definition. 

The term "reversible integral heat" implies 

that during the process of building up the quan
tity adsorbed, each portion of added fluid must 
come from a supply at the momentary equi
librium pressure. The required quantity is 

(1/N»)(AU + J Pwiiv) = (1/A">)( C hidN - u\ 

(23) 

with JV0 in the initial fraction defined as desired. 
It is difficult to avoid the conclusion that the 
upper limit of integration should be ATa. In 
practice, what is determined is "total adsorption 
heat," in which the whole quantity of fluid is 
taken from a supply maintained at the final 
equilibrium pressure. The distinction vanishes 
if the heat content of the fluid is independent of 
pressure; in fact, the heat evolved in an experi
ment then becomes independent of the pressure 
at which the fluid enters the calorimeter, provided 
that it enters slowly and is not precooled by ex
pansion. This can be secured by providing the 
entrance to the calorimeter with a throttling 
constriction. In general the quantity desired is 
AQ"/N" = AU/N" + Pv1 = (1/2V°)(AQ - PV) (24) 

with Q" and JV0 defined as desired. Note that 
in accordance with the accepted definition B, 
even if the calorimeter is entirely filled with 
adsorbent, not all the heat evolved is credited to 
adsorption, but a correction term Ptpi has to be 
subtracted, equal to the heat which would be 
observed if fluid were allowed to flow into an 
evacuated calorimeter of volume equal to the 
pore volume. 

When the fluid is added reversibly in small 
instalments, we obtain the reversible differential 
adsorption heat, <f, qh or qc. The corrections 
required in calculating these quantities from 
thermal experiments on an actual system are 
given in the right-hand side of eq. (14). q* 
has a simple physical meaning—-the heat set free 
in a calorimeter completely filled with adsorbent. 
qc can be reduced with the aid of eq. (16) to the 
form 

q.°dN° = qdN + (7MXdM, + PdP,) (25) 

That is, it is the difference between the heat 
observed in the actual calorimeter and that 
which would be observed in the same calorimeter 
in an experiment in which the adsorbent was 
absent, but all external conditions were the same, 
this difference then being divided by dJV0 as 
previously defined. This is a purely objective 
definition. qb, corresponding to the accepted 
definition, has neither advantage. I t is to be 
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noted that the differential heats are not the 
derivatives of the total heats, but differ by a term 
involving ~dht/dP. The q's can always be calcu
lated from the correspondingly defined isosteres, 
by the Clapeyron equation. 
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There are not available experimental results 
(particularly thermal data) over sufficient range 
to serve as illustrations of the functions and rela
tions which have been discussed. Now, in spite 
of the a priori impropriety of 
applying bulk equations of 
state to matter in a state of 
subdivision approaching the 
molecular scale, the Polanyi 
method has proved capable of 
predicting successfully ad
sorption isotherms, and can 
be readily extended to include 
thermal properties. It there
fore seemed worth while to 
work out by this method the 
general character which the 
most important quantities 
may be expected to display in 
the region of high pressure, 
and especially in the critical 
region. For this purpose we have considered a 
typical e-<p curve for charcoal, and assumed a hypo
thetical gas which accurately obeys van Laar's 
equation of state, with the constants adopted for 
carbon dioxide by Lowry and Olmstead.3 The 
reason for this choice was that we wished to pro

fs) H. H. Lowry and P. S. Olmstead, J. Phys. Chan., 31, 1601 

(1027). 

duce an entirely self-consistent set of figures. 
Lowry and Olmstead used the van Laar equation 
in connection with the observed vapor pressures 
and coexisting densities of carbon dioxide; but 
the latter are not wholly consistent with the 

former, as is shown by the 
necessity of introducing an 
arbitrary correction in the cal
culated potential e in order to 
secure the same value for the 
coexisting phases. We have 
preferred to secure perfect con
sistency by using the vapor 
pressures and coexisting densi
ties given by the equation itself 
(by finding at each tempera
ture two densities for which 
the calculated pressures and 
potentials are the same). The 
Active gas is somewhat less 
volatile than the actual, and 
has a higher critical tempera
ture; for purposes of illus

tration this is unimportant. 

Isotherms were first calculated substantially 
by the method of Lowry and Olmstead, except 
that it was necessary to use their complete equation 
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(15), instead of the simplified one (16), because of 
the high density of the fluid in the free space. 
This calculation gives N* provided that <p2 is 
identified with the maximum <p of the e-<p curve 
(in this case 0.708 cc. per gram adsorbent). To 
get N'° we subtract 0.708 5, and to get Nc we 
further subtract 0.472 S, where S is the density of 
the equilibrium fluid, and 0.4.72 is 931 upon the 
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assumption that the adsorbent has the density 
2.12. The JV's are here computed in grams per 
gram of adsorbent. The course of N* is shown in 
Fig. 1. Above the critical temperature (42°) the 
isotherm rises monotonically but at a steadily 
decreasing rate as the fluid in the pores becomes 
progressively less compressible, approaching a 
positive limit at infinite pressure. (The con
cavity upward which appears at each extremity is 
due solely to the adoption of a logarithmic pres
sure scale.) At lower temperatures a disconti
nuity in slope appears at the saturation pressure, 
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and the system is said to be saturated; yet it is 
possible to force in more fluid, especially if not 
too far below the critical temperature. The 
dashed line is the locus of saturated systems, and 
terminates in the circle marking the critical poi nt. 

Figure 2 shows the classical isotherms, Nh. 
Above the critical temperature, they exhibit 
maxima, from which they fall rapidly, tending 
eventually to zero at infinite pressure, when the 
fluid in the pores can no longer be compressed. 
(Polanyi4 has called attention to this feature.) 
Below the critical temperature, the saturation 

(4) See H. Freundlich, "Colloid and Capillary Chemistry" 
(Hatfield's translation), Methuen and Co., London, 1926, p. 128, 
Fig. 27. 

line takes a form similar to the familiar "steam-
dome." Upon reaching it, each isotherm drops 
discontinuously from the upper to the lower 
branch. I t is remarkable that the last isotherm 
below the critical point (40° isotherm) crosses the 
saturation line below the saturation pressure, and 
terminates upon it from above, thus anticipating 
in a way the very rapid fall of the slightly higher 
isotherms. This produces a very curious over
lapping in the critical region. 

Figure 3 shows the isotherms of N°. They are 
similar to those of Nh except that they become 

negative at high pressures. 
This is not disturbing when 
we recall the close relation 
between N° and va (eq. 
(19)). Like any other par
tial molal or specific volume, 
v& can be positive or nega
tive, accordingly as repul
sive or attractive terms in 
molecular interaction pre
dominate. 

Figures 4, 5 and 6 give 
the corresponding isosteres 
(lines of constant iVa, Nh or 
iV°). The vapor pressure 
line of the liquid is also in
cluded; due to the inade
quacy of the assumed equa
tion of state, it is much more 
strongly curved than that of 
the real liquid, and this is 
undoubtedly also true of the 
isosteres in the same pres
sure range. 

The various thermal quan
tities can be readily com

puted by a natural extension of the Polanyi 
method. In accordance with the basic postulates, 
we assume that the total energy of any adsorption 
system can be found by adding: first, the internal 
energy of the adsorbent (a constant which may be 
arbitrarily set equal to zero); second, the internal 
energy of the adsorbed fluid as given by its 
normal equation of state under the conditions 
assumed to prevail within the adsorption space; 
and, finally, the mutual potential energy of 
adsorbent and fluid, as given by the product of 
adsorption potential times density in each element 
of volume. Let ut and / f be the total and free 
molal energies of the fluid at any pressure or 

2.5 3.0 
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density 5 (not necessarily, as before, the equi
librium pressure). Then elementary considera
tions show that at each place in the adsorption 
space, the adsorption potential e is equal to ft — 
Jf, where Jf is the value of ft in the free space. 
The total potential energy is therefore -J^dip 5 
(Zf — /?)• The total internal energy of the fluid is 
J*d<p S us. For the total energy of the system 
we have 

U = Sdv & (ut - ft) + f,N* (23) 
This can be evaluated exactly as Polanyi evalu
ates iVa = fd<p 5, by combining the funda-

The equation of state assumed is 

Pv = [1 + lj(v - b0)]RT - a/v (25) 

where a, bs and bo are functions of the tempera
ture, either analytic or empirical. Expressing 
their temperature derivatives with primes, we 
find 
ut = RT*[(b'tbo - bX)/K In (v - fo/v) -

bX/bo(v - Jo)] - (a - a'T)/v (26) 

(The energy of the very dilute gas at the given 
temperature is arbitrarily taken as zero.) ht is 
found by adding Pv as given by the equation of 
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mental e-<p curve with one showing <5(wf — ft) as 
a function of e, the latter being characteristic of 
the fluid alone. (Since uf contains an undefined 
constant, the value of U so computed will contain 
an arbitrary term proportional to iVa) but this will 
fall out when we compute differences like AU.) 

For the present computation, the internal 
energy of the fluid can be found by applying to the 
equation of state the well-known formula 

(du/dv)r = T(HPZdT)V - P (24) 

state, ft is the negative of e as given by Lowry 
and Olmstead's eq. (16) without the last term. 

Figures 7 and 8 show several thermal quanti
ties as thus calculated, at 0°, plotted against the 
amount adsorbed. Definition A is used in all 
cases. It will be noticed that U is a nearly linear 
function of N. At saturation, the slope increases 
somewhat. At lower temperatures this change 
of slope is more pronounced. I t is due to the 
fact that when a new portion of fluid is added 



560 A L B E R T SPRAGUE COOLIDGE Vol. 56 

to a system below saturation, it goes almost 
entirely into a region of lower potential t than 
that previously occupied. When, a t saturation, 
the available space is all filled, any further fluid 
forced in will be distributed (under strong com
pression) throughout the whole space, including 
regions of high potential e so tha t the potential 

5000 y 
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Fig. 7. 

energy increases more rapidly (in absolute magni
tude). The internal energy of the fluid is also 
less a t high compression, the work of compression 
being more than compensated by the heat of 
compression thrown out. The marked curvature 
in q and AQ near saturation is due to the violent 
fluctuations of the quant i ty Pv{ in this region. 
The break in q a t saturation is less than one 
would a t first expect. Remembering t ha t q = 
It1 — b U/dN, we see tha t this is because the break 
in bU/bN nearly cancels tha t in H1 (the lat ter 
break being just the. heat of vaporization). At 
30 ° the calculation even shows a slight increase in 
q a t saturation. 

The approximate constancy of q now gives a 
clear explanation of the characteristic form of the 
isosteres with definition A, Fig. 4. The slope of 
these isosteres is determined by the Clapeyron 
equation, which can be written 

a i n P / d ( l / r ) = -q/a a = Pvt/T (27) 

Since q is nearly constant, the slope will be es
sentially proportional to the ratio a. Now, this 
ratio is constant and equal to R in the range of 
low pressures. I t falls off somewhat just before 
saturation occurs, drops discontinuously to a 
very small value upon condensation of the vapor, 
and then rises rapidly without limit as the pres

sure is further increased. This behavior is faith
fully reproduced by the slopes with which the iso-
steric lines cross the 0° horizontal a t the various 
pressures. Indeed, substantially the same values 
of q may be taken from these slopes (which merely 
means tha t the calculations have been correctly 
performed). This stands in marked contrast 
with the case of the vapor pressure curve of a 
liquid, which is very nearly a straight line. In 
this case, the falling off in the volume change is 
practically balanced by the diminution in the 
latent heat, until very near the critical point. 

According to Polanyi, q should take a very 
simple form at low temperatures, where the vapor 
is dilute and the liquid practically incompressible 

2 = t + \ 

where «is the potential in the adsorption space a t 
the level where the meniscus is supposed to form, 
and X is the latent heat of evaporation. At higher 
temperatures, q will be greater, owing to the 
compressibility of the liquid, bu t will approach 
e + X a t low values of N. In order to show this, 
a graph of e + X is included in Fig. 8. For tem
peratures above the critical, Polanyi gives two 

0 0.2 0.4 0.6 0.8 
iVa, mg. 
Fig. 8. 

equations, (35) and (36), the exact meaning of 
which is not quite clear, bu t which apparently 
intend to express what we have called 

-V = fdv 8(e - ut) 

with Uf calculated from the van der Waals equa
tion. This, of course, differs from q in being a 
total, not a differential, quanti ty, and in omitt ing 
the work term. Lowry and Olmstead also pu t 
forward an expression (19) for the "heat of 
adsorption," which in the present nomenclature 
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t d dip. This is clearly in
adequate, as it omits the contribution from the 
internal energy change of the fluid in passing 
from the free to the adsorbed (compressed) state, 
which will (below the critical point) include the 
heat of vaporization. 

Summary 

The phenomenology and thermodynamic theory 
of adsorption systems are generalized and made 
applicable to the entire range of conditions within 
which the adsorbed substance normally exists as 

Introduction 
In order to provide experimental material 

illustrating the application of the ideas developed 
in the previous paper, we undertook to investigate 
the adsorption equilibrium between charcoal and 
several gases over a range of temperature and 
pressure extending both lower and higher than 
their critical regions. By working up to 100° 
and 100 atmospheres, we could accomplish this 
with carbon dioxide (critical point 31°, 73 atm.), 
nitrous oxide (c. p. 36.5°, 72 atm.) and silicon 
tetrafluoride (c. p. —1.5°, 50 atm.). 

Materials and Apparatus 

The charcoal used was a steam-activated coconut char
coal obtained from the National Carbon Company. The 
particles passed a 10- but not a 20-mesh sieve. In order 
to provide a basis for estimating the "skeleton" volume 
and the "pore" volume, we determined the apparent den
sity by simple displacement (with boiling to expel gases) 
in several liquids, with the following results: 

Liquid Density Specific volume 
Mercury 0.629 1.590 
Benzene 2.06 0.485 
Ether 2.12 .472 
(Graphite) (2.25) ( .444) 

We also determined an adsorption isotherm with benzene 
vapor at 20" as follows. 

Pressure, mm. 13.5 20.5 39.5 50.0 70.5 74.0 
Cc. ads. per g. 181.4 196.0 208.8 215.5 231.8 234.5 

Upon extrapolating the isotherm to the saturation pres
sure of liquid benzene, we obtain 236 cc. of benzene vapor 
(measured at N. T. P.) as the maximum taken up by one 
gram of our chnrconl. 

a fluid. Special attention is devoted to the cor
rections required when experiments are performed 
at high pressures. The conclusion is reached that 
several different methods of defining adsorption 
(all equivalent at low pressures) can advantage
ously be adopted, according to the purpose in 
hand. The consequences of adopting each of 
these definitions are followed in some detail, and 
illustrated, in the absence of suitable experi
mental material, by computations based upon the 
Polanyi theory. 
CAMBRIDGE, MASS. RECEIVED OCTOBER 13, 1933 

The carbon dioxide was the last half of the contents of a 
commercial cylinder, and was used without special treat
ment to remove impurities, as the coincidence of adsorp
tion and desorption points on a given isotherm seemed to 
prove that no significant amounts of foreign substances 
were present. The silicon tetrafluoride was prepared sub
stantially by the method described by Booth and Ger-
mann,1 in which the gas is generated by strongly heating 
barium fluosilicate, passed through a carbon dioxide cold 
trap and through glass wool and phosphorus pentoxide to 
remove water and hydrofluoric acid, and purified by dis
tillation. Before use, each sample was condensed with 
liquid air and pumped. The density of the gas was care
fully determined in a balloon, two runs giving 4.674 and 
4.675 g. per liter at N. T. P. Nitrous oxide was taken from 
a cylinder. The density of the gas drawn from the top of 
the cylinder in the ordinary way was found too low; but 
when the cylinder was inverted the evaporated liquid pos
sessed a normal density of 1.976, corresponding to 99.7% 
pure nitrous oxide, which was considered satisfactory. 

The measurements were carried out with a quartz 
spring balance, from which the glass bucket containing the 
charcoal depended by a long platinum wire. The whole 
was housed in a nickel-silver tube, closed at the bottom, 
of sufficient length so that the upper part, enclosing the 
spring, did not change perceptibly in temperature during 
the necessary heating and cooling of the charcoal below. 
The movements of the spring were followed with a cathe-
tometer through windows of plate glass, set with Wood's 
metal into a square steel block, which served as a union 
into which were screwed the lower and upper parts of the 
nickel-silver tube, as well as the connections to pump, 
gage and gas supply. Pressures up to 5 atmospheres 
were read on a mercury column. Above 5 atm. a dead
weight gage was at first used. Later, a large Bourdon 
gage was obtained, and by occasional comparison with the 
dead-weight gage was found satisfactory as to accuracy 

(1) Booth ami nermann, J. Phyt. Chem., 21, 81 (1017). 
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